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ABSTRACT 

Continuous waveform (CW) polyphase sequences for radar have a much lower power 

spectral density (PSD) than pulsed signals but can retain the same target detection 

capability. The use of different phase values or subcodes to modulate the carrier provides 

a low probability of intercept (LPI) radar waveform which cannot be seen by a non-

cooperative intercept receiver (NCIR). Also, it is a low probability of detection (LPD) 

waveform due to the low PSD. Frequency shift keying (FSK) radar has a higher PSD but 

is moved about quickly in frequency over a large bandwidth in which the NCIR cannot 

follow. Consequently, the FSK (usually a Costas frequency set) remains a LPI signal but 

not a LPD. To combine the advantages of each waveform, this thesis presents a hybrid 

FSK/PSK emitter waveform to further the LPI, LPD characteristics. By combining both 

techniques (PSK/FSK), a high time-bandwidth waveform is constructed that provides 

better LPI/LPD characteristics than each waveform. The periodic ambiguity function 

(PAF) is evaluated for three different complementary sequences to modulate a Costas 

frequency set. The peak time and Doppler sidelobes of the PAF are compared against the 

P4 polyphase modulation for the Golay complementary sequence (15 dB improvement), 

the quaternary periodic complementary sequence (16 dB improvement), and the 

quaternary Golay complementary sequence (18 dB improvement).   
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 1

I. INTRODUCTION 

A. FSK AND PSK CODING OF LPI RADAR CW SIGNALS 

Most current radars are designated to transmit short duration pulses with 

relatively high peak power. Modern Electronic Warfare (EW) receivers must perform the 

tasks of detection, parameter identification, classification, and exploitation in a complex 

environment of high noise interference and multiple signals [1]. The high power pulsed 

radars can be detected easily by the use of relatively modest EW systems. The intercept 

of these type of radar transmissions ultimately leads to vulnerability through the use of 

either anti-radiation missiles or Electronic Attack (EA). By using Low Probability of 

Intercept (LPI) techniques, it is possible to design radar systems which cannot be detected 

by current EW intercept receiver designs [2]. These radar systems use Continuous 

Waveform (CW) signals that are polyphase modulated and/or frequency modulated. The 

modulations allow the CW waveform to detect the targets but not be detected by the 

intercept receiver.  

LPI signals are typically low power CW waveforms that are modulated by a 

periodic function, such as a phase code sequence or a Frequency Hopping (FH) sequence. 

As such, the Periodic Autocorrelation Function (PACF) and Periodic Ambiguity Function 

(PAF) analysis can help determine the receiver response and its measurement accuracy 

including the effect on target resolution, the ambiguities in range, radial velocity and its 

response to clutter. The PAF is similar to the ambiguity function often used to represent 

the magnitude of the matched receiver output for a CW modulated signal. The cut of the 

PAF at zero Doppler is the PACF and cuts of the PAF along the zero delay yield the 

response of the correlation receiver at a given Doppler shift. The time sidelobes in the 

PACF help quantify the LPI waveform in its ability to detect targets without interfering 

sidelobe targets [3]. That is, if the PACF has high sidelobes, a second nearby target might 

be able to hide in a sidelobe and go undetected. To quantify the LPI waveform 

characteristics, the Peak Side Lobe (PSL) and the Integrated Sidelobe Level (ISL) can be 

defined to measure both the maximum sidelobe power and the total power in the  
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sidelobes and is a useful measure when a single point target response is of concern. The 

ISL is considered a more useful measure than the PSL when distributed targets are of 

concern [1]. 

Polyphase modulations or poly-Phase Shift Keying (PSK) waveforms include 

binary, the Frank code, the P1, P2, P3 and P4. These CW modulations are particularly 

attractive for LPI radar systems as they have very low periodic ambiguity sidelobes in 

both time-offset and Doppler-offset. In fact, the Frank code, P1, P3 and P4 codes are 

“perfect codes” as they have zero level sidelobes in the PACF [3]. Note however, that 

finite duration signals, such as pulse train cannot achieve this ideal autocorrelation 

function since as the first sample (or last sample) enters (or leaves) the correlator, there is 

no sample that can cancel the product to yield a zero output. In addition, the polyphase 

modulation of the CW carrier spreads the Power Spectral Density (PSD) out over a large 

bandwidth which is ideal for LPI radar. 

Frequency modulation or Frequency Shift Keying (FSK) of a CW carrier signal 

can also be a useful LPI radar technique. A LPI radar that uses FSK techniques changes 

the transmitting frequency in time over a wide bandwidth in order to prevent an 

unintended receiver from intercepting the waveform. The frequency slots used are chosen 

from a frequency hopping sequence, and it is this unknown sequence that gives the radar 

the advantage in processing gain. That is, the frequency appears random to the intercept 

receiver and so the possibility of it following the changes in frequency is remote. As 

such, the FSK of a CW carrier is an LPI technique. This prevents a jammer from 

reactively jamming the transmitted frequency. Rapidly changing the transmitter 

frequency however, does not lower the PSD of the emission, but instead moves the PSD 

about according to the FSK sequence. Consequently the FSK radar is an LPI technique 

but not a Low Probability of Detection (LPD) technique. The most important FSK 

technique is the Costas sequence of frequencies. These frequencies produce unambiguous 

range and Doppler measurements while minimizing the cross talk between frequencies 

[4]. In general, the Costas sequence of frequencies provides an FSK code that produces 

peak sidelobes in the PAF that are down from the mainlobe response by a factor inversely 

proportional to the number of transmitted continuous frequencies. That is, the order of 
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frequencies in a Costas sequence or array is chosen in a manner to preserve an ambiguity 

response with a thumbtack nature (the narrow mainlobe and sidelobes are as low as 

possible) [1]. 

In order to spread the PSD of an FSK signal over a large bandwidth, the recent 

concept of a hybrid waveform has been introduced. In this waveform, the PSD of a FSK 

sequence is phase modulated by a polyphase waveform. Although phase codes such as 

the Frank code and the P4 code have been used, the recent development of 

complementary phase sequences to phase modulate the FSK waveform have not been 

studied. This type of signaling can achieve a high time-bandwidth product and can 

enhance the LPI/LPD features of the emitter waveform beyond that of each waveform 

individually. Periodic autocorrelation and ambiguity analysis of the signals reveal a lower 

Doppler- and time- (range) sidelobes and a lower integrated sidelobe level (ISL). The 

FSK/PSK techniques can also maintain a high Doppler tolerance, while yielding an 

instantaneous spreading the component frequencies along with an enhanced range 

resolution [5], [6]. 

B. PRINCIPAL CONTRIBUTIONS 

To improve the range (time) sidelobe behavior, this thesis develops a new class of 

hybrid PSK/FSK CW signals for LPI/LPD radar applications. Three complementary 

sequences are used to phase modulate a Costas FSK waveform. Complementary 

sequences are those in which the sum of the PACFs of the sequences in that set is zero 

except for a zero-shift term. An example using a Frank polyphase code is first evaluated. 

References that document recent advances in these sequence constructs were 

obtained and studied. The sequence values were coded in MATLAB and used to 

modulate a CW FSK waveform consisting of  3,2,6,4,5,1  kHzjf  frequencies. The 

new PSK/FSK waveforms are presented and the periodic ambiguity properties are 

evaluated. The PSK/FSK complementary sequences include the Golay Complementary 

Sequence (GCS) [7], the Quaternary Periodic Complementary Sequence (QPCS) [8], and 

the Quaternary Golay Complementary Sequence (QGCS) sequence [9]. The PACF and 

the PAF are evaluated for each hybrid waveform in order to quantify the range (time) 
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offset and Doppler offset sidelobe performance. The scope of the study is focused on 

providing an analysis of the results to identify the improvements in peak sidelobe 

performances and reduction of Doppler sidelobes. The new emitter architecture and 

signal processing algorithm is presented. The PACF and the PAF are evaluated for each 

waveform in order to quantify the range (time) offset and Doppler offset sidelobe 

performance. 

C. THESIS OUTLINE 

This thesis research, analysis, procedures, and results are organized in the 

following manner: 

Chapter II provides a short description of radio frequency sensors that use LPI 

techniques. These include the antenna and transmitter characteristics of a LPI radar, the 

PSK and FSK signaling techniques and the hybrid PSK/FSK approach for these 

waveforms. Also described are the PACF and the PAF. 

Chapter III presents the GCS as a technique to phase modulated the Costas FSK 

CW waveform to improve the time sidelobe behavior of received radar signals. Results 

presented include the ACF, PACF, and PAF. 

Chapter IV describes a new construction method of QPCS proposed by Jang Ji-

Woong et al., as a new technique to phase modulated the Costas FSK CW waveform to 

improve the time sidelobe behavior of received radar signals. Results presented include 

the ACF, PACF, and PAF. 

Chapter V introduces the application of a new QGCS sets proposed by Zeng et al., 

as a new technique to phase modulated the Costas FSK CW waveform to improve the 

time sidelobe behavior of received radar signals, following the same analysis conducted 

in Chapters III and IV, in order to compare its differences and results. 

Finally, concluding remarks are summarized in Chapter VI presenting an analysis 

of the results and a comparison between the three different techniques. Future works and 

its applicability in LPI radar technology are also presented. 
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II. RADIO FREQUENCY SENSOR 

A. LPI RADAR  

Many users today radar today are specifying a LPI and low probability of 

identification (LPID) as an important tactical requirement. The term LPI is that property 

of a radar that, because of its low power, wide bandwidth, frequency variability, or other 

design attributes, makes it difficult for it to be detected by means of a passive intercept 

receiver. A LPI radar is defined as a radar that uses a special emitted waveform intended 

to prevent a non-cooperative intercept receiver from intercepting and detecting its 

emission but if intercepted, makes identification of the emitted waveform modulation and 

its parameters difficult [1]. It follows that the LPI radar attempts detection of targets at 

longer ranges than the intercept receiver can accomplish detection/jamming of the radar. 

The success of an LPI radar is measured by how hard it is for the intercept receiver to 

detect/intercept the radar emissions.  

The LPI requirement is in response to the increase in capability in modern 

intercept receivers to detect and locate a radar emitter [2]. One thing is for certain. For 

every improvement in LPI radar, improvements for intercept receiver design can be 

expected. In applications such as altimeters, tactical airborne targeting, surveillance, and 

navigation, the interception of the radar transmission can quickly lead to EA or jamming 

if the parameters of the emitter can be determined. Due to the wideband nature of these 

pulse compression waveforms, however, this is typically a difficult task. NOTE: we have 

extended the pulse compression term to CW modulations since the techniques are similar 

and the objective is the same. The LPI requirement is also in response to the ever-present 

threat of being destroyed by precision guided munitions and antiradiation missiles 

(ARMs). ARMs are designated to home in on active, ground-based, airborne or shipboard 

radars, and disable them by destroying their antenna systems and/or killing or wounding 

their operator crews [2].  

The denial of signal intercept protects the emitters from most of these types of 

threats and is the objective of using a LPI waveform. Since LPI radar tries to use signals 
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that are difficult to intercept and/or identify, they have different design characteristics 

compared to conventional radar systems. These characteristics are discussed below. 

1. Characteristics of LPI Radar 

Many combine features helps the LPI radar prevent its detection by modern 

intercept receivers. These features are centered on the antenna (antenna pattern and scan 

patterns) and the transmitter (radiated waveform). 

a. Antenna Considerations 

The antenna is the interface, or connecting link between some guiding 

system and (usually) free space. Its function is to either radiate electromagnetic energy 

(the transmitter feed the guiding system) or receive electromagnetic energy (the guiding 

system feed the receiver system). The antenna pattern is the electric field radiated as a 

function of the angle measured from boresight (center of the beam). The various parts of 

the radiation pattern are referred to as lobes that may be subclassified into main, side, and 

back lobes [10]. The main lobe is defined as the lobe containing the direction of 

maximum radiation. The side lobe is a radiation lobe in any direction other than the 

intended lobe, and it represents the main focus of this study. A back lobe refers to a lobe 

that occupies the hemisphere in a direction opposite to that of the main lobe. The side 

lobe level is usually expressed as a ratio of the power density in the lobe in question to 

that of the main lobe. That is, the side lobe level is amplitude of the side lobe normalized 

to the main beam peak. The highest side lobe is usually that lobe closest to the main 

beam. It is also convenient to use the side lobe ratio (SLR), which is the inverse of the 

side lobe level [1].      

b. Transmitter Considerations 

A conventional radar that uses coherent pulse train has independent 

control of both range and Doppler resolution. This type of radar waveform also exhibits a 

range window that can be inherently free of side lobes. The main drawback of a coherent 

pulse train waveform is the high peak-to-average power ratio put out by the transmitter. 

The average power is what determines the detection characteristics of the radar. For high 
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average power, a short pulse (high range resolution) transmitter must have a high peak 

power, necessitating vacuum tubes and high voltages. The high peak power transmissions 

can also easily be detected by noncooperative intercept receivers. The duty cycle cd for a 

pulse emitter relates the average transmitted power avgP to the peak power tP  as 

 avg
c

t

P
d

P
   (1) 

The duty cycle can also be calculated as 
   

 R
c

R

d
T


  (2) 

where RT  is the pulse repetition interval (PRI – time between pulses) and R is the 

emitter’s pulse width or duration (in seconds). Typical duty cycles are 0.001cd  (the 

average power 0.001 times the peak power) for navigation radar. 

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1.  Comparison of a pulse radar and a CW radar. From [1]. 

In modulated CW signals, however, the average-to-peak power ratio is 1 

or 100% duty cycle. This allows a considerably lower transmit power to maintain the 

same detection performance as the coherent pulse train radar. Also, solid state 

transmitters can be used that are lighter in weight. A comparison of a coherent pulse train 

 

Power 

Time 

Pulse radar high 
peak power and 
small duty cycle 

CW radar low 
continuous power 
100% duty cycle 
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radar and the CW radar is shown in Figure 2. The CW radar has a low continuous power 

compared to the high peak power of the pulse radar but both can give the same detection 

performance. On the other hand, the final peak power for a pulsed system may be only a 

few decibels (dB) higher than the CW systems having equivalent performance. 

Consequently, most LPI emitters use continuous wave (CW) signals. A 

CW (tone) signal is easily detected with a narrowband receiver and cannot resolve targets 

in range. LPI radars use periodically modulated CW signals resulting in large bandwidths 

and small resolution cells, and are ideally suited for pulse compression. 

There are many pulse compression modulation techniques available that 

provide a wideband LPI CW transmit waveform. Any change in the radar’s signature can 

help confuse an intercept receiver and make intercept difficult. The wide bandwidth 

makes the interception of the signal more difficult. For the intercept receiver to 

demodulate the waveform, the particular modulation technique used must be known 

(which is typically not the case). Pulse compression (wideband) CW modulation 

techniques include: 

 Linear, nonlinear frequency modulation; 

 Phase modulation (phase shift keying PSK); 

 Frequency hopping (frequency shift keying FSK), Costas array; 

 Combined (hybrid) phase modulation and frequency hopping 
(PSK/FSK); 

 Noise modulation 

With the above modulation techniques, the radiated energy is spread over 

a wide frequency range in a matter that is initially unknown to a hostile receiver. The 

phase and frequency modulation are not inherently wideband or narrowband. In this 

thesis, we are concerned with Costas FSK/PSK where we investigate the use of 

complementary sequences to phase modulate the carriers. 

c. Carrier Frequency Considerations 

Another LPI radar technique is choosing the emitter frequency 

strategically. The use of high operating frequency band that is within atmospheric 
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absorption lines makes interception difficult, but also makes the target detection by the 

radar even more difficult in most cases. Peak absorption occurs at frequencies of 22, 60, 

118, 183, and 320 GHz [1]. The RF frequency can be chosen at these frequencies to 

maximize the attenuation in order to mask the transmit signal and limit reception by a 

hostile receiver (atmospheric attenuation shielding). Since the physics of radar detection, 

however, depends only on the energy placed on the target, LPI radar must still radiate 

sufficient effective radiate power (ERP) to accomplish detection. The loss for the radar 

due to atmospheric absorption is over its total two-way path (out to the target and back), 

while the interceptor’s loss is over the one-way path (from the radar to the intercept 

receiver). Because of the high absorption of the emitter’s energy, this technique is always 

limited to short range systems. For our study, we are using Costas FSK frequency 

hopping waveforms over a relatively large bandwidth. 

In summary, the transmitter uses wideband modulation techniques (for the 

range resolution desired). Hybrid PSK/FSK waveforms along with the strategic selection 

of frequencies for a frequency hopping FSK waveform is of interest in this thesis. Most 

typically is that of a Costas frequency set [1]. By taking these characteristics into 

consideration the next section describes the importance of these hybrid radar waveforms. 

B. AMBIGUITY ANALYSIS OF LPI WAVEFORMS 

The ambiguity (delay-Doppler) analysis of LPI waveforms is important to 

understand the properties of the CW waveform and its effect on measurement accuracy, 

target resolution, ambiguity in range, and radial velocity, and its response to clutter [1]. 

1. The Ambiguity Function 

A matched radar receiver performs a cross-correlation of the received signal and a 

reference signal, whose envelope is the complex conjugate of the envelope of the 

transmitted signal. The ambiguity function describes the response of a matched receiver 

to a finite duration signal. In ambiguity analysis, the receiver is considered matched to a 

target signal at a given delay and transmitted frequency. The ambiguity is then a function  
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of any added delay and additional Doppler shift from what the receiver was matched to. 

If ( )u t is the complex envelope of both the transmitted signal and the received signal, the 

ambiguity function is given by [11] 

 * 2( , ) ( ) ( ) j vt
NT u t u t e dt   




   (3) 

where  is the time delay and  is the Doppler frequency shift. The 3D plot, as a function 

of  and  is called the ambiguity diagram. The maximum of the ambiguity function 

occurs at the origin ( 0, 0)   , and (0, 0) is the output if the target appears at the 

delay and Doppler shift for which the filter was matched. The delay-Doppler response of 

the matched filter output is important for understanding the properties of the radar 

waveform [12]. Ideally, the ambiguity diagram would consist of a diagonal ridge centered 

at the origin, and zero elsewhere (no ambiguities). The ideal ambiguity function, 

however, is impossible to obtain. For a coherent pulse train consisting of RN pulses with 

pulse duration R and pulse repetition interval (PRI) rT , the ambiguity function indicates 

that the Doppler resolution is the inverse of the total duration of the signal R rN T while the 

delay resolution is the pulse duration [13]. 

2. Periodic Autocorrelation Function (PACF) 

LPI signals are typically low-power CW waveforms that are modulated by a 

periodic function, such as the phase code sequence or linear frequency ramp. A major 

advantage of the periodically modulated CW waveform is that they can yield a perfect 

PACF [1]. For example, consider a phase-coded CW signal with cN phase codes each 

with subcode duration bt s. The transmitted CW signal has a code period c bT N t and a 

periodic complex envelope ( )u t given as 

 ( ) ( )u t u t nT   (4) 

for 0, 1, 2, 3...n     . The values of the PACF as a function of the delay r (which are 

multiples of bt ) are given by 

 *

1

1
( ) ( ) ( )

cN

b
nc

R rt u n u n r
N 

   (5) 
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and ideally we would like a perfect PACF or 

 1, 0 (mod )
0, 0 (mod )( )b

c
c

r N
r NR rt 
  (6) 

Since the CW signal is continuous, the perfect PACF is possible. 

3. Periodic Ambiguity Function (PAF) 

The periodic ambiguity function describes the response of a correlation receiver 

to a CW signal modulated by a periodic waveform with period T, when the reference 

signal is constructed from an integral number N of periods of the transmitted signal 

(coherent processor length NT) [14]. The target illumination time (dwell time) PT must 

be longer than NT. As long as the delay  is shorter than the difference between the dwell 

time and the length of the reference signal 0 ( )P N T   , the illumination time can be 

considered infinitely long and the receiver response can be described by the PAF given as 

[15] 

 * 2

0

1
( , ) ( ) ( )

NT j vt
NT u t u t e dt

NT
      (7) 

where  is assume to be constant, and the delay rate of change is represented by the 

Doppler shift  . The PAF for N periods is related to the single-period ambiguity function 

by a universal relationship 

 
sin( )

( , ) ( , )
sin( )NT T

N vT

N vT

     


  (8) 

where  

 * 2

0

1
( , ) ( ) ( )

T j vt
NT u t u t e dt

T
      (9) 

is the single PAF. The single PAF is multiply by a universal function of N and T that is 

independent of the complex envelope of the signal and that does not change with  . The 

PAF shows the effect of using a reference receiver consisting of N code periods and 

examining Equation (8) reveals that for a large number of code periods N, the PAF is 

increasingly attenuated for all values of  except at multiples of 1 T . It also have main 

lobes at 0, 1, 2,...T    . Equation (8) also reveals that the PAF has relatively strong 
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Doppler side lobes. Matter that will be take into consideration for the analysis in order to 

determine its differences in the time sidelobes levels between the different 

complementary sequences that will be implemented. 

The PAF serves CW radar signals in a similar role to which the traditional 

ambiguity function serves finite duration signals. Note that for a large N, the PAF is 

compressed to zero for all  , except near , 0, 1, 2,...n T n     . For an infinitely large 

N, the function ( , )NT   becomes a train of impulses. For large N, the PAF of a 

sequence exhibiting perfect periodic autocorrelation will strongly resemble the ambiguity 

function of a coherent pulse train [1]. 

a. Periodicity of the PAF 

The PAF formulation given in (9) represents the straightforward implementation 

of the matched filter to the signal ( )u t delayed by  and Doppler shift by  . It can easily 

be shown that the cut along the PAF’s delay axis ( ,0)NT  (zero Doppler) is the 

magnitude of the PACF of the signal given by (7) [14]. The cut along the Doppler axis 

(zero delay) is 

 
2 2

0

1
(0, ) ( )

NT j vt
NT u t e dt

NT
     (10) 

Assuming a constant amplitude signal, ( ) 1u t  (e.g., phase-modulated CW signals) 

 
sin( )

(0, )NT

vNT

vNT

 


  (11) 

and 

 (0,0) 1NT   (12) 

For any integer n, the periodicity on the delay axis is 

 ( , ) (0, )NT NTnT     (13) 

For the  axis, for 0, 1, 2,...m     

 ( , ) ( , )NT NTm T nT m T      (14) 

The symmetry cuts are a function of the three parameters: the code period N, the number 

of phase codes cN , and the number of code periods used in the correlation receiver N.  



 13

4. Peak and Integrated Side Lobe Levels 

The time side lobes level in the ACF help quantify the LPI waveforms in its 

ability to detect targets without interfering side lobe targets. That is, if the ACF has high 

side lobes, a second nearby target might be able to hide in a side lobe and go undetected. 

To quantify the LPI waveform characteristics, the peak side lobe level (PSL) of the ACF 

can be defined as 

 
 

2

10 2 2

max side lobe power max  R ( )
10 log 10log

(0)peak response

k
PSL

R

   
    

    
 (15) 

where k is the index for the points in the ACF, R(k) is the ACF for all of the output range 

side lobes except that at k=0, and R(0) is the peak of the ACF at k = 0. The integrated side 

lobe level (ISL) is 

 
 

2

10 2 2

total power in side lobes ( )
10log 10log

(0)peak response

M

k M

R k
ISL

R

 
  

  
  (16) 

and is a measure of the total power in the sidelobes as compared with the compressed 

peak. The PSL is a useful measure when a single point target response is of concern. 

Values of the PSL depend on the number of subcodes in the code sequence cN as well as 

the number of code periods N within the receiver. The ISL is considered a more useful 

measure than the PSL when distributed targets are of concern. Typical matched filter ISL 

values range from -10 to -20 dB [1]. 

5. Properties of the ACF, PACF, and PAF 

To demonstrate the properties of the ACF, PACF, and PAF, we look briefly as an 

example at the Frank code, considering its variable length and that it can be used to phase 

modulate a complex signal every subcode period bt . 

The transmitted signal can be written as  

  ( 2 )( ) c kj f ts t Ae     (17) 

where cf is the carrier frequency and k is the phase modulation that is used to shift the 

phase of the carrier in time every subcode period according to the particular phase 
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modulation used. Note that the carrier frequency remains constant. The Frank phase 

modulation code is derived from a step approximation to a linear frequency modulation 

wavefrom using M frequency steps and M samples per frequency. If i is the number of 

the sample in a given frequency and j is the number of the frequency, the phase of the ith 

sample of the jth frequency for the Frank code is 

 ,

2
( 1)( 1)i j i j

M

     (18) 

where i = 1,2,…,M, and j = 1,2,…,M. The Frank code has a length of 2
cN M subcodes, 

which is also the corresponding pulse compression ratio or processing gain RPG . For bt s 

(the subcode period), the cpp represents the number of carrier cycles per subcode, then 

b ct cpp f s resulting in a transmitted signal bandwidth 1 1bB t cpp  . The code 

period can also be expressed as 

 2
c b bT N t M t   (19) 

Figure 2 shows the Frank phase modulation (52) with M = 8 ( 64)cN   where the 

carrier frequency is cf  1 kHz, sf  7 kHz, and cpp=1. Figure 3 shows the power 

spectral density of the frank signal. Note that since the cpp=1, the 3-dB bandwidth B = 1 

kHz, as illustrated.  

The ACF and the PACF are shown in Figure 4 for the number of code periods

1N  . These results are obtained by using the LPI toolbox (LPIT) developed in [1] with 

r = 1, * 10bF Mt  , 1T  , 100N K  . The PSL can be read from Figure 4(a). The 

largest side lobe level is 28 dB down from the peak. This is in agreement with the 

theoretical result 1020log (1 ) 28PSL M   dB (voltage ratio). Also note form Figure 

4(b) that the CW Frank signal has a perfect PACF (zero side lobes). The PAF for N = 1 is 

shown in Figure 5. The phase modulation signals generated using the LPIT contain 

 s
sc

c

cpp f
b

f


  (20) 

number of samples per subcode. The total number of samples within a code period is then 

c scN b . 
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Figure 2.  Frank phase modulation for M = 8 ( 64)cN  . 

 

Figure 3.  Power spectral density for Frank phase modulation. 
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Figure 4.  Frank (a) ACF (PSL= -28 dB down) and (b) PACF for M = 8, cpp=1 with 
number of reference waveforms N = 1. 

 

Figure 5.  PAF for Frank phase modulation for M = 8 ( 64)cN  , cpp = 1 with number of 

reference waveforms N = 1. 
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Increasing the number of code periods N used in the receiver can help to decrease 

the Doppler side lobes as well as the time side lobes in the ACF. Figure 6 shows the ACF 

and PACF for when N = 4 code periods are used within the reference receiver 

( 1, 40, 0.3, 100)br F Mt T N K      . Including N in the estimation of the peak side 

lobe level 

 10

1
20 logPSL dB

NM
   
 

 (21) 

Using N = 4, PSL = -40dB down from the peak shown in Figure 6(a).  

Figure 7 shows the PAF of the Frank code with N = 4 and demonstrates that by 

using more copies of the reference signal within the correlation receiver, the delay-

Doppler side lobe performance improves, important consideration take into account for 

the analysis by applying it among the different complementary sequences implemented. 

 

 

Figure 6.  Frank (a) ACF (PSL = -40 dB down) and (b) PACF for M = 8 ( 64)cN  , cpp 

= 1 with number of reference N = 4. 
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Figure 7.  PAF for Frank phase modulation for M = 8 ( 64)cN  , cpp = 1 with number of 

reference waveforms N = 4. 

From Figure 7 it can also be noted that the Delay and the DSL are much lower 

than the BPSK signal examined in II. 

To develop the comparison between the three different complementary sequences 

described in Chapter I, a CW Costas six-frequency waveform is used for each code 

period. Each frequency is divided into sub-codes and with duration of each sub-code of

7pt  ms. For each waveform five code periods are generated providing a working 

example as well as to give capability to evaluate the three different complementary 

sequence sets. Results of the PSL, ISL, and PDS are obtained by following the steps 

established in the flow chart from Figure 8. The results are shown and then analyzed in 

Chapter VI. 
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Figure 8.  Analysis’ process flow chart. 

In the next chapter, details on the use of Golay complementary sequences to 

encode Costas FSK CW waveforms in order to improve the range (time) sidelobe 

behavior are presented by applying the techniques above described.  

C. LPI RADAR WAVEFORM 

The hybrid LPI radar technique combines the technique of FSK (FH using Costas 

sequences) with that of the PSK modulation using sequences of varying length [5], [6]. 

This type of signaling can achieve a high time-bandwidth product of processing gain, 

enhancing the LPI features of the radar. Ambiguity properties of the signal are retained 

by preserving the desirable properties of the separate FSK and PSK signaling schemes. 

The FSK/PSK techniques can maintain a high Doppler tolerance, while yielding an 

instantaneous spreading of the component frequencies along with an enhance range 

resolution [5]. Below, FSK and PSK signals are described. 

1. Phase Shift Keying (PSK) 

While linear Frequency Modulation CW (FMCW) has established itself as one of 

the most popular LPI waveforms, PSK CW waveforms have recently been a topic of 

active investigation, due to their wide bandwidth and inherently low Periodic Ambiguity 

Function (PAF) side lobe levels achievable. For the LPI radar (as with pulse radar), it is 

important to have a low side lobe level to avoid the side lobes of large targets from 
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masking the main peak of smaller targets. The choice of PSK codes affects the radar 

performance and the implementation. For the PSK waveforms, the bandwidth (inverse of 

the subcode period) is selected first by the designer, in order to achieve the range 

resolution desired. Encompassing a large target (such as a ship) within a single resolution 

cell can aid in detection, but results in a narrow bandwidth signal. On the other hand, a 

wideband transmitted signal can be chosen to divide the target echo into many resolution 

cells, and is a technique that is useful for target recognition. The trade-off here is that the 

radar requires a larger transmitted power to detect a target that has a small cross section, 

decreasing the ability of the radar to remain quiet [1]. 

Binary phase shift codes (e.g., 0 to 180 degrees) are popular, but provide little in 

the way of low side lobes and Doppler tolerance. Most useful for the LPI radar are the 

polyphase codes where the phase shift value within the subcode can take on many values 

(not just two) and the code period T can be made extremely long. These codes have better 

sidelobe performance and better Doppler tolerance than the binary phase codes.    

The PSK technique can result in a high range resolution waveform, while also 

providing a large SNR processing gain for the radar. The average power of the CW 

transmission is responsible for extending the maximum detection range while improving 

the probability of target detection (as compared to a pulsed signal of equal peak power). 

PSK techniques are also compatible with new digital signal processing hardware, and a 

variety of side lobe suppression methods [16] can be applied. Compatibility with solid 

state transmitters enables power management of the transmitted CW signal. Power 

management allows the radar to keep a target’s SNR constant within the receiver, as the 

range to the target changes. 

a. The Transmitted Signal 

In a PSK radar, the phase shifting operation is performed in the radar’s 

transmitter, with the timing information generated from the receiver-exciter. The 

transmitted complex signal can be written as 

  2( ) c kj f ts t Ae    (22) 
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where k  is the phase modulation function that is shifted in time, according to the type of 

PSK code being used, and the cf  is the angular frequency of the carrier. The inphase (I) 

and quadrature (Q) representing the complex signal from the transmitter can be 

represented as 

 cos(2 )c kI A f t    (23) 

and 

 sin(2 )c kQ A f t    (24) 

Within a single code period, the CW signal is phase shifted cN  times, with phase k  

every bt  seconds, according to a specific code sequence. Here bt  is the subcode period. 

The resulting code period is 

 c bT N t  s  (25) 

And the code rate is 

 1c c bR N t  1s  (26) 

The transmitted signal can be expressed as 

 
1

[ ( 1) ]
cN

T k b
k

u u t k t


    (27) 

for 0 t T   and zero elsewhere. The complex envelope ku  is 

 kj
ku e   (28) 

for 0 bt t   and zero otherwise. The range resolution of the phase coding CW radar is 

 
2

bct
R   (29) 

and the unambiguous range is 

 
2 2

c b
u

cN tcT
R    (30) 

If cpp is the number of cycles of the carrier frequency per subcode, the bandwidth of the 

transmitted signal is 

 1c bB f cpp t   Hz  (31) 

The received waveform from the target is digitized and correlated in the receiver using a 

matched (unweighted) or mismatched (weighted) filter that contains a cascade of N sets 



 22

of cN  reference coefficients. The results from each correlation are combined to 

concentrate the target’s energy and produce a compressed pulse having a time resolution 

equal to the subcode duration bt  and a height of cN . For this reason, the number of phase 

code elements cN  is also called the compression ratio. Recall that the PAF describes the 

range-Doppler performance of this type of receiver, and depends on the number of 

reference sets used. 

Because the choice of PSK code affects the radar performance and the 

implementation, below are the different types described. 

b. Binary Phase Codes (Barker) 

A Barker sequence is a finite sequence  0 1, ,..., nA a a a of +1’s and -1’s 

of length 2n  such that the aperiodic autocorrelation coefficients (or side lobes) are 

 
1

n k

k j j k
j

r a a





  (32) 

satisfies 1kr  for 0k  and similarly .k kr r     

Consequently, a binary Barker sequence has elements  1, 1 ,ia    which are only 

known for lengths cN  2,3,4,5,7,11, and 13. A list of the nine known Barker sequences 

is shown in Table 1.3 along with their Peak Sidelobe Level (PSL) and Integrated 

Sidelobe Level (ISL) in decibels. The nine sequences are listed where +1 is represented 

by a + and a -1 is represented by a -. Figure 2 shows the ACF  kr and the PACF of a CW 

signal phase coded with an 13cN  bit Barker sequence, and reveals the side lobe 

structure of the code. For the signal, 1cf   kHz and the sampling frequency sf  7 kHz. 

Note the sidelobe characteristics reflecting the perfect nature of the Barker codes. For the 

cN  13-bit code shown, PSL= 1020log (1 ) 22.3cN   dB. The number of cycles per phase 

1.cpp  The PACF plot reveals the fact that the Barker codes do not have perfect PACF 

side lobe characteristics (zero side lobes)), but have a lowest side lobe levels that equals 

the PSL shown for the AFC (-22 dB).  
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Table 1.   Nine Barker Codes with corresponding PSL and ISL. From [1]. 

Upon reception of the target’s return signal, the receiver uses a detector to 

generate a + or – for each subcode. Figure 9 demonstrates the binary phase coding 

technique and receiver architecture using an 13cN  -bit Barker code. In this figure, the 

receiver output uses a single tapped delay line matched filter to compress the transmitted 

waveform. When the return signal vector is centered within the filter, the + filter 

coefficients line up with the signal +’s and – filter coefficients line up with signals –’s, 

and a maximum output results as shown. 

 

Code Length Code Elements PSL (dB) ISL (dB) 

2 ,    6.0  3.0  

3   9.5  6.5  

4     12.0  6.0  

4      12.0  6.0  

5      14.0  8.0  

7         16.9  9.1  

11             20.8  10.8  

13              22.3  11.5  
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Figure 9.  ACF and PACF for the cN  13-bit binary PSK signal. From [1].  

c. Polyphase Codes 

Polyphase sequences are finite length, discrete time complex sequences 

with constant magnitude but with a variable k . Polyphase coding refers to phase 

modulation of the CW carrier, with a polyphase sequence consisting of a number of 

discrete phases. That is, the sequence elements are taken from an alphabet of size 2cN  . 

Increasing the number of elements or phase values in the sequence allows the 

construction of longer sequences, resulting in a high range resolution waveforms with 

greater processing gain in the receiver or equivalently a larger compression ratio. The 

trade-off is that a more complex matched filter is required compare to a Barker code filter 

[1]. Figure 10 describes the binary phase coding techniques and receiver architecture 

scheme using a 13-Barker code. 

The importance of polyphase coding in the LPI analysis is that by 

increasing the alphabet size cN , the autocorrelation side lobes can be decreased 

significantly while providing a larger processing gain. By narrowing the subcode width 
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bt (so there are fewer cycles per phase), the transmitted signal can also be spread over a 

large bandwidth, forcing the receiver to integrate over a larger band of frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Binary phase coding techniques and receiver architecture using a 13-Barker 
code  13cN  . After [1]. 

d. Polyphase Barker Code 

Polyphase Barker codes allow the LPI emitter a larger amount of 

flexibility in generating the phase modulated waveforms. Since the number of different 

phase terms (or alphabet) is not two-valued, there is considerable advantage to their use 

since they are unknown to the nooncooperative intercept receiver. 
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Consider the generalized barker sequences  ja of infinite length n where 

the terms ja are allowed to be complex numbers of absolute value 1 where the correlation 

is now the Hermitian dot product1 

 *

1

n k

k j j k
j

r a a





  (33) 

where *z represents the complex conjugate of z . A class of transformations can be 

developed that leave the absolute values of the correlation function unaltered, so that, in 

particular, generalized Barker sequences are changed into other generalized Barker 

sequences [17].  

e. Frank Code 

In 1963, R.L Frank devised a polyphase code that is closely related to the 

linear frequency modulation and Barker codes [18]. The Frank code is well documented 

and has recently been used successfully in LPI radars. The Frank code is derived from a 

step approximation to a linear frequency modulation waveform using M frequency steps 

and M samples per frequency. The Frank code has a length or processing gain of

2
cN M  [19]. 

2. Frequency Shift Keying (FSK) 

Coding technique that increases the library of LPI radar waveform and three 

important FSK or frequency hopping (FH) techniques for coding CW waveforms are 

described below.  

An LPI radar that uses FH techniques hopes or changes the transmitting frequency 

in time over a wide bandwidth in order to prevent an unintended receiver from 

intercepting the waveform. The frequency slots used are chosen from an FH sequence, 

and it is this unknown sequence that gives that gives the radar the advantage in terms of 

processing gain. That is, the frequency sequence appears random to the intercept receiver, 

and so the possibility of it following the changes in frequency is remote. In contrast to the 

                                                 
1 The Hermitian dot product of two vectors 1 2 1 2( , ,..., ), ( , ,..., )n nx x x y y y is 

*

1
.

n

i ii
x y

  
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FMCW and PSK techniques, the FH technique of rapidly changing the transmitter 

frequency does not lower the PSD of the emission, but instead moves the PSD about 

according to the FH sequence. Consequently, the FH radar has a higher probability of 

detection than the PSK or FMCW waveform, but retains a significantly low probability of 

interception. 

a. The Transmitted Signal 

In an FSK radar, the transmitted frequency jf is chosen form the FH 

sequence  1 2, ,...,
FNf f f of the available frequencies for transmission at a set of 

consecutive time intervals 1 2, ,...,
FNt t t . The frequencies are placed in the various time 

slots corresponding to the binary time-frequency matrix. Each frequency is used once 

within the code period, with one frequency per time slot and one time slot per frequency. 

The expression for the complex envelope of the transmitted CW FSK is given by 

 2( ) jj f ts t Ae   (34) 

The transmitted waveform has FN contiguous frequencies within a band B, with each 

frequency lasting pt s in duration. 

CW FSK radars using multiple frequencies can compute very accurate 

range measurements. To illustrate, consider a CW radar that transmits the waveform 

 ( ) sin(2 )js t A f t  (35) 

where the received signal from a target at a range TR is 

 
4

( ) sin(2 ) sin 2 j T
j T j

f R
s t A f t A f t

c


  

 
    

 
 (36) 

Since the range to the target depends on the frequency difference, the 

range resolution than depends on the duration of each frequency as  

 
2

pct
R   (37) 
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The transmitted power for each frequency must be such that the energy content within the 

target echo is sufficient for detection, and enough to ensure that accurate phase 

measurements can be made. 

In summary, for the FSK CW radar, the frequency difference f

determines the maximum unambiguous detection range. The target’s range computed by 

measuring the return signal phase difference from two consecutives transmitted 

frequencies. The range resolution, R , depends only on the FH period [1]. 

b. Costas Codes 

In a study by J.P Costas, techniques were presented for generating a 

sequence of frequencies that produce unambiguous range and Doppler measurements 

while minimizing the cross talk between frequencies [4]. In general, the Costas sequence 

of frequencies provides an FH code that produces peak side lobes in the PAF, that are 

down from the main lobe response by a factor of 1 FN for all regions in the delay-

Doppler frequency plane. That is, the order of frequencies in a Costas sequence or array 

us chosen in a manner to preserve an ambiguity response with a thumbtack nature (the 

narrow main lobe and side lobes are as low as possible). The firing order of these 

frequencies is based on primitive roots (elements) of finite fields. 

A Costas array or (frequency) sequence ଵ݂, … , ே݂ಷ is a sequence that is 

permutation of the integers 1,…, ிܰ satisfying the property 

 1k k j i jf f f f     (38) 

for every i, j, and k such that 1 ൑ ݇ ൏ ݅ ൏ ݅ ൅ ݆ ൑ ிܰ. An array that results from a Costas 

sequence in this way is called a Costas array. 

c. Costas Sequence PAF 

The PAF can be approximate by overlaying the binary time-frequency 

matrix upon itself, and shifting one relative to the other according to a particular delay 

(horizontal shifts) and particular Doppler (vertical shifts). At each combination of shifts, 

the sum of coincidences between points of the fixes and the shifted matrix represents the  

 



 29

relative height of the PAF. The PAF is constructed by considering each row (delay) in the 

difference triangle, and placing a “1” in the PAF delay-Doppler cell corresponding to 

each ,i j .  

d. Construction of Costas Arrays 

There are many analytical procedures for constructing Costas frequency 

hopping arrays. Although Costas arrays may exist in principle for any positive integer 

FN , these analytical construction methods are typically limited to values of FN related to 

prime numbers [6], [8], [9]. Most construction methods to produce a large number of 

Costas arrays of equal length are based on the properties of primitive roots [1].   

The most common method is the Welch, in which for the construction of a 

Costas array, an odd prime number p is chosen first. The number of frequencies and the 

number of time slots in the Costas sequence are then ( ) 1FN p p   where ( )p is the 

Euler function. Next, a primitive root g modulo p is chosen. Since g is a primitive root 

modulo 2 ( ), , ,..., pp g g g are mutually incongruent and form a permuted sequence of the 

reduced residues p. Welch showed that this reduced residue sequence is a Costas 

sequence. 

3. Hybrid FSK/PSK Emitter 

The hybrid LPI radar technique combines the technology of FSK (FH using 

Costas sequences) with that of PSK modulation using varying length [5], [6]. This type of 

signaling can achieve a high time band-width product of processing gain, enhancing the 

LPI features of the radar. Ambiguity properties of the signal are retained by preserving 

the desirable properties of the separate FSK and PSK signaling schemes. The FSK/PSK 

techniques can maintain a high Doppler tolerance, while yielding an instantaneous 

spreading of the component frequencies along with an enhanced range resolution [5]. For 

purposes of this analysis, a Costas-based FSK/PSK signal (Barker 5-bit PSK over each 

frequency) is analyzed.  
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a. FSK/PSK Signal 

Recall that for the FH LPI radar, the CW waveform has FN contiguous 

frequencies within a bandwidth B, whit each frequency lasting pt s in duration. The 

hybrid FSK/PSK signal further subdivides each subperiod into BN phase slots, each of 

duration bt as shown in Figure 11. The total number of phase slots in the FSK/PSK 

waveform is then 

 T F BN N N  (39) 

with the total code period b B FT t N N . The expression for the complex envelope of the 

transmitted CW FSK/PSK signal is given by 

 2( ) j kj f ts t Ae    (40) 

where k is one of the BN Barker codes for the analysis presented, and jf is one of the 

FN Costas frequencies [1].  

During each hop, the signal frequency (one of the FN frequencies) is 

modulated by a binary phase sequence, according to a Barker code sequence of length 

BN 5, 7, 11, or 13. In order to show the process, the FSK/PSK signal generated by 

using the 16FN  Costas sequence  3,2,6,4,5,1f  , and phase modulating it with a 

Barker binary phase modulation of length 5BN  gives a signal with a final waveform as 

a binary phase modulation within each frequency hop, resulting in five phase subcodes 

equally distributed within each frequency, for a total of 30P FN N  subcodes. 
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Figure 11.  General FSK/PSK signal containing FN frequency subcodes (hops) each with 

duration pt s. Each frequency subcode is subdivided into BN phase slots, each 

with duration bt .  

As an illustrative example, Figure 12 shows the CW waveform using a 

Frank Code with a 7 kHz sampling frequency, 1 kHz carrier frequency, 1 cycle per phase, 

64 phase codes within 8 samples. 

 

Figure 12.  CW waveform using a Frank code with 15sf  kHz. 

Figure 13 shows the power spectrum magnitude of the Costas sequence 

FSK/PSK after phase modulation that reveals the spread spectrum characteristic of the 

phase-modulated Costas signal  3,2,6,4,5,1f  kHz. For this signal the sampling 
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frequency 15sf  kHz, the subperiod for each frequency is 6pt  ms (B=167 Hz) and an 

5BN  -bit Barker code is used. Figure 14(a,b) shows the ACF and the PACF, 

respectively, of the FSK/PSK sequence. Note the phase modulation spikes that are 

present with regular periodicity. Figure 15 shows the PAF and the Doppler side lobes 

present.  

 

Figure 13.  Power spectrum magnitude plot for Costas waveform with 5-bit phase 
modulation. 

It is important to remark that FSK signals provide a higher probability of 

detection compared to PSK signals but offer many advantages for LPI signaling. 

Combined with PSK, significant LPI/LPD results can be obtained. The hybrid 

modulations tend to make the transmitted signal appear as noise-enhancing its LPI nature. 

These hybrid techniques are a subset of a larger group of radar architectures known as 

random signal or noise radar, providing a good deal of electronic protection and having a 

counter-electronic support capability [1]. 
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Figure 14.  (a) ACF and (b) PACF plot for the Costas sequence with a 5-bit Barker phase 
modulation. 

 

Figure 15.  PAF plot for the Costas sequence with a 5-bit Barker phase modulation 
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III. GOLAY COMPLEMENTARY SEQUENCES  

A. GOLAY DEFINITION 

Golay complementary sequences are a pair of finite length of sequences with 

complementary aperiodic autocorrelation function (AACF) that can be used in radar 

waveform design. The basic property of Golay complementary sequences is that the sum 

of the pair of aperiodic autocorrelation functions is zero for all time shifts except at the 

zero time shift where the sum is twice the length of the code. The property of Golay 

complementary sequences can be expressed mathematically where ia and ib (I = 1,2,…,n) 

are the pair of binary complementary sequences of code length 2n . The AACF for the 

complementary sequences can be express as follows [20]: 

 
1

n j

j i i j
i

c a a





  (41) 

and 

 
1

n j

j i i j
i

d b b





   (42) 

The sum of the pair of AACF can be expressed as 

 0 0j jc d j     (43) 

and  

 0 0 2c d n   (44) 

Golay sequences have been used in, for example, ground penetration radar to improve the 

range sidelobe levels [21], and netted radar systems [22]. Efficient Golay correlation 

processors have been reported [23].  

Golay gave several recursive and one non-recursive methods for generating 

complementary sequences. The recursive method used to generate the binary 

complementary sequences is based on the following algorithm [21]: 

 
    1 1 1 1, ,n n n n n na a b b a b        (45) 
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where the operator [ ] denotes concatenation of sequences, and na and nb represent the 

complementary binary sequence of length 2n  [7].   

B. IMPLEMENTATION 

A block diagram of the Golay PSK/FSK radar processor is shown in Figure 16. 

The first step in generating the transmitted CW waveform is to generate the Costas 

frequency hopping sequence using, for example, the Welch construction method, 

described in Chapter II. Next, a sequence of Golay codes na is generated (length 32 ) and 

overlaid on each Costas frequency. Each Golay code takes on one of two values 

representing a phase change of 0 and 180  of the CW Costas waveform. In the receiver, 

the AACF is pre-computed for the complementary signal with the Golay sequence nb . For 

the receiver waveform (uses na ), the AACF is computed and the two AACFs are added 

together. A block diagram of the radar processor is shown in Figure 16. 

 

Figure 16.  Block diagram of CW emitter using Costas frequency hopping with Golay 
complementary sequences. From [7].  
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For this analysis, a CW Costas six-frequency waveform jf  [3 2 6 4 5 1] kHz is 

used for each code period. Each frequency is divided into sub-codes. With the duration of 

each sub-code 7pt  ms, the number of cycles within a sub-code for each frequency is 

cf  [21 14 42 28 35 7], respectively. If the receiver samples the return waveform with 

sampling frequency sf there are s jf f   samples within each cycle giving a total number 

of samples within a code period of T
s c s j cN f f f N    where cN is the number of sub-

codes within a code period [1]. For each waveform five code periods are generated. 

These parameters were chosen to provide a working example while keeping the 

computations reasonable. 

C. ANALYSIS 

Figure 17 shows the AACF and the PACF of the Costas frequency hopping 

waveform when n = 3 ( 8cN  ) Golay complementary sequence is used ( 5320)sN  . The 

PSL of the waveform is 38 dB, i.e., a 16 dB improvement in PSL is achieved over the 

Barker 13cN  waveform. The delay axis is normalized by the sampling period 

1 1 15b st f  kHz and the AACF and PACF repeat at each code period of sN samples.  

The PSL can be read from Figure 17(a) in where the largest side lobe level is 38 

dB down from the peak. Also it can be note from Figure 17(b) that the signal has a PACF 

= 38 dB (non-zero side lobes), being the ISL= 14 dB.  
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Figure 17.     (a) AACF and (b) PACF of Costas FSK waveform using Golay 
complementary sequence of code length 32 . 

While examining the signal, the axis is normalized by the subcode period bt and 

so the PAF from Figure 18, repeats at c scN b since the waveform is sampled. That is, 

dividing this axis by the number of samples per subcode scb gives the delay axis in terms 

of the subcode number. Figure 18, as a function of the time delay ( ) and the Doppler 

frequency shift ( ), is called the ambiguity diagram and by analyzing the delay-Doppler 

response of the matched filter output, the PDS is approximately equal to 24 dB while the 

peak time sidelobe is 41 dB. 
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Figure 18.  PAF for Costas FSK waveform using Golay complementary sequence of code 
length 32 . 

In the next chapter, details and implementation of a new Quaternary Periodic 

Complementary Sequences (QPCS) to encode Costas FSK CW waveforms in order to 

improve the range (time) sidelobe behavior are presented by applying the techniques 

described in Chapter II and following the same procedures presented in Chapter III. 
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IV. QUATERNARY PERIODIC COMPLEMENTARY SEQUENCE 

A. DEFINITION 

A new construction method of QPCS was proposed by Ji-Woong Jang et al in [8] 

using a binary periodic complementary sequence (PCS) set with even period. The 

proposed method componentwise applies the Grey mapping to a pair of sequences in a 

binary PCS set, where the only necessary condition is that the employed binary PCS set 

should have an even period. 

For positive integers q and N, let u(t) and v(t) be q-ary sequences over the integer 

ring  0,1,... 1qZ q  with period N. Then the PACF of u(t) is defined by 

 
1

( ) ( )

0

( )
N

u t u t
u q

t

R t 


 



  (46) 

where 0 N  and q is the complex primitive qth root of unity, e.g., 4 1   . The 

periodic cross-correlation function of u(t) and v(t) is defined by 

 
1

( ) ( )

0

( )
N

u t v t
uv q

t

R t 


 



   (47) 

Let  be a set of M sequences as 

  ( ) 0 1 .is t i M     (48) 

If the sum of all non-trivial periodic autocorrelation functions of ( )is t  is zero, then 

is called a set of PCS. 

 
1

0

, mod
( )

0, modi

M

s
i

MN for N
R

for N











  

  (49) 

 Let  ,r s be the Gray mapping defined by 

  

0, ( , ) (0,0)

1, ( , ) (0,1)
,

2, ( , ) (1,1)

3, ( , ) (1,0)

if r s

if r s
r s

if r s

if r s




   
 

 (50) 
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Let ( )r t and ( )s t be binary sequences of period N. Then a quaternary sequence 

g(t) is defined by  ( ) ( ), ( )g t r t s t , which can be also expressed as  

 ( ) ( ) ( )4 4
4

1 1
( 1) ( 1) .

2 2
g t r t s t   

     (51) 

The cardinality of this complementary sequence set is the same as that of the used 

binary complementary sequence set. Krone and Sarwate derived the relation between the 

autocorrelation functions of the binary sequences and the corresponding quaternary 

sequences in (57) as follows: 

Let ( )r t , ( )s t , ( )v t , and ( )w t be binary sequences of the same period. Let ( )g t and 

( )h t  be quaternary sequences defined by  ( ) ( ), ( )g t r t s t and  ( ) ( ), ( )h t v t w t , 

respectively. Then the cross-correlation function (CCF) ( )ghR  between ( )g t and ( )h t is 

given as 

  4

1
( ) ( ) ( ) ( ( ) ( ))

2gh rv sw rw svR R R R R          (52) 

For an even integer N, let ( )a t and ( )b t be binary sequences of period N. Define a 

quaternary sequence as 

  ( ) ( ), ( 2) .q t a t b t N   (53) 

Then the PACF of ( )q t is calculated as 

 41
( ) ( ( ) ( )) ( ( 2) ( 2)).

2 2q a b ab baR R R R N R N
           (54) 

A quaternary sequence set can be constructed from a binary PCS set using the 

Gray map of a binary sequence and its half-period shift. For an even integer N, let  be a 

binary PCS with M sequences of period N defined as 

  ( ) 0 1ib t i M      (55) 

The quaternary sequence set  is defined as 

  ( ) 0 1ig t i M      (56) 

where ( )ig t is a quaternary sequence given by 

  ( ) ( ), ( 2 .i i ig t b t b t N   (57) 
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Then the sequence set  is a QPCS set. 

From the definition of a PCS set, what is important is the sum of all periodic 

autocorrelation values of all sequences in  is always zero except for 0.   

From (69) and (71) it is obtain 
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( ) ( ( ) ( )) ( ( 2) ( 2))
2 2

( )

i i i i i

i

g b b b b

b

R R R R N R N

R

    



     


 (58) 

From Equation (75) it is clear that  

 
1 1

0 0

( ) ( ) 0
i i

M M

g b
i i

R R 
 

 

    (59) 

Therefore,  is a QPCS set [8]. 

B. IMPLEMENTATION 

Following the same steps described in Chapter III implementation section, and 

considering the example describe in [8], we have: 

Let  a binary PCS set of period 16 with 4 sequences defined as 

  ( ) 0 3ib t i     (60) 

where ( )ib t is given as 

0

1

2

3

( ) 0,0,1,0,1,0,0,0,1,0,1,1,0,0,0,1

( ) 0,0,0,0,1,0,0,0,0,1,1,0,1,1,1,0

( ) 0,0,1,0,1,0,0,0,0,0,1,1,0,1,1,0

( ) 0,0,0,0,1,0,0,0,1,1,1,0,1,0,0,1

b t

b t

b t

b t






 

Let  be a set of quaternary sequences according to (72) constructed from . Then  is 

given as 

  ( ) 0 3ig t i     (61) 

where ( )ig t is calculated as 
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0

1

2

3

( ) 1,0,2,1,3,0,0,1,3,0,2,3,1,0,0,3

( ) 0,1,1,0,2,1,1,0,0,3,3,0,2,3,3,0

( ) 0,0,2,1,3,1,1,0,0,0,2,3,1,3,3,0

( ) 1,1,1,0,2,0,0,1,3,3,3,0,2,0,0,3

g t

g t

g t

g t






 

And the PACFs of ( )(0 3)ig t i  are 

  
0
( )gR   

1
( )gR 

2
( )gR 

3
( )gR  ( )

igR   

0 16 16 16 16 64 

1 -4 4 0 0 0 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 -4 4 0 

6 0 0 0 0 0 

7 4 -4 4 -4 0 

8 0 0 0 0 0 

9 4 -4 4 -4 0 

10 0 0 0 0 0 

11 0 0 -4 4 0 

12 0 0 0 0 0 

13 0 0 0 0 0 

14 0 0 0 0 0 

15 -4 4 0 0 0 

Table 2.   PACFs of ( )ig t for  binary PCS set. 
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C. ANALYSIS 

Figure 19 shows the AACF and the PACF of the Costas FH waveform when n = 3 

( 8cN  ) quaternary complementary sequence is used ( 5320)sN  . The PSL of the 

waveform is -39 dB, i.e., a 14 dB and 1 dB improvement in PSL is achieved over the 

Barker 13cN  waveform and over the GCS, respectively. The delay axis is also 

normalized by the sampling period 1 1 15b st f  kHz and the AACF and PACF repeat 

at each code period of sN samples.  

The PSL can be read from Figure 19(a) in where the largest side lobe level is 

38 dB down from the peak. This is in agreement with the theoretical result PSL = 

1020log (1 ) 39M   dB (voltage ratio). Also it can be note from Figure 19(b) that the 

signal has a PACF = 38 dB (non-zero side lobes), being the ISL= 14 dB. 

 

Figure 19.  (a) AACF and (b) PACF of Costas FSK waveform using QPCS of code length
32 . 
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While examining the signal, the axis is normalized by the subcode period bt and 

so the PAF from Figure 20, repeats at c scN b since the waveform is sampled. That is, 

dividing this axis by the number of samples per subcode scb gives the delay axis in terms 

of the subcode number. By analyzing the delay-Doppler response of the matched filter 

output in the ambiguity diagram, the PDS is about 24 dB, being the same results 

obtained from the GCS analysis. 

 

Figure 20.  PAF for Costas FSK waveform using QPCS of code length 32 . 

In the next chapter, details and implementation of a new Quaternary Golay 

Complementary Sequences to encode Costas FSK CW waveforms in order to improve 
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V. QUATERNARY GOLAY COMPLEMENTARY SEQUENCES 

A. DEFINITION 

In their journal paper [9], Zeng et al. gave new constructions methods of the 

quaternary sequence sets based on the binary sequence sets and Gray mapping. For the 

aperiodic, periodic, and Z-complementary sequence sets constructed, they considered 

them as three direct applications of these constructions. 

They considered a binary sequence set  1 2, ,...,l l ll
MU u u u , which consists of M 

sub-sequences with the same length N. For convenience, for '2 1M M  they set 

  ( 1) 1 1 2( 1) 1 2( 1) 2( ( ), ( ))l l l
s k k kx u t u t        (62) 

and 

  ( 1) 1 2 2( 1) 1 2( 1) 2( ( ), ( ))l l l
s k k kx u t u t       (63) 

where 1 '.k M   

Hence, they constructed a quaternary sequence set as follows. For 2 'M M , they 

had 

  1 2 3 4 2 ' 1 2 '11 , , , ,..., , .l l l l l ll
M Mx x x x x x   (64) 

For 2 ' 1M M  , they had 

  1 2 3 4 2 ' 1 2 '12 , , , ,..., , ,l l l l l l ll
M M Mx x x x x x x   (65) 

where  ( )( 1)
l
Ml u t

Mx   . 

The resulting sequence sets have the following properties. 

The sum of the ACFs of the quaternary sequence sets in 11
l or 12

l is 

 
, ,

1 1

( ) ( )l l l l
k k k k

M M

x x u u
k k

C C 
 

   (66) 

and  

 
, ,

1 1

( ) ( )l l l l
k k k k

M M

x x u u
k k

R R 
 

   (67) 
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Only the aperiodic case and 2 ' 1M M  are considered due to space limitation 

and similarity. Was set 2( 1) 1r f k    and 2( 1) 2s g k    , and lu v w z u    , 

where1 'k M  . Therefore, it is apparent that
, ,

( ) ( )l l l l
M M M Mx x u u

C C  . As a consequence 

 
2( 1) 1 2( 1) 1 2( 1) 2 2( 1) 2

'

, , , , ,
1 1 1

( ) ( ) ( ) ( ) ( ).l l l l l l l l l l
k k k k k k M M k k

M M M

x x x x x x x x u u
k k k

C C C C C    
       

  

          (68) 

The sum if the CCFs between the quaternary sequence sets in 11
l and 11

h or 12
l

and 12
h has 

 
, ,

1 1

( ) ( )l h l h
k k k k

M M

x x u u
k k

C C 
 

   (69) 

and 

 
, ,

1 1

( ) ( )l h l h
k k k k

M M

x x u u
k k

R R 
 

   (70) 

Deriving only the aperiodic case and 2 'M M . Let lu v u  , hw z u  ,

2( 1) 1r f k    , and 2( 1) 2s g k    , where1 'k M  , having 

 
2( 1) 1 2( 1) 1 2( 1) 2 2( 1) 2

'

, , , ,
1 1 1

( ) ( ) ( ) ( ).l h l h l h l h
k k k k k k k k

M M M

x x x x x x u u
k k k

C C C C   
       

  

         (71) 

B. IMPLEMENTATION 

Taking from last section the binary sequences lU and hU , are now substituted into 

the GCSS as 2 ( , , )lGCSS U M N and 2 ( , , )hGCSS U M N , respectively. Hence in [9] the 

authors had the following theorems depending upon M being even or odd: 

- If 2 ( , , )lGCSS U M N  is employed, 11
l and 12

l are 4 ( , , )lGCSS X M N .  

- Let 2 ( , , )lGCSS U M N and 2 ( , , )hGCSS U M N be the mate to each other. Then 

so are 11
l and 11

h or 12
l and 12

h . 

-  Let  2 ( , , ) 1lGCSS U M N l T  be the mutually orthogonal (MO) 

complementary sequence (CS) sets. Then so are: 
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   
   

11 4

12 4

1 ( , , ) 1

1 ( , , ) 1 .

l l

l l

l T GCSS X M N l T

l T GCSS X M N l T

     

     
 

Taking the binary MO CS sets  2 ( , 4, 4) 1 4lGCSS U l  copied from [24], as 

follows. 

0111 1101 0111 1101

1011 1110 1011 1110
'

1101 0111 0010 1000

0001 1011 1110 0100

 
 
  
 
 
 

 

where  1 11 1 1
1 2 3 4, , , (0111,1101,0111,1101)U u u u u  and ( 2,3,4)lU l  are omitted due to 

similar expressions. Thus they produce the quaternary MO CS sets 

   11 41 4 ( , 4, 4) 1 4l ll GCSS X l      as follows. 

1232 0323 1232 0323

3032 2123 3032 2123
'

3212 2303 1030 0121

1012 0103 3230 2321

 
 
  
 
 
 

 

where  11 1 1 1
211 1 3 4, , , (1232,0323,1232,0323)x x x x   and 11( 2,3,4)l l  are omitted due 

to similar expressions.    

Taking this implementation into account for this analysis, just 1U and 2U are 

being compared as codes, which quaternary MO CS are 1
11 and 2

11 , respectively.  

C. ANALYSIS 

Figure 21 shows the AACF and the PACF of the Costas frequency hopping 

waveform when n = 3 ( 8cN  ) quaternary Golay complementary sequence is used

( 5320)sN  . The PSL of the waveform is -41 dB, i.e., a 19 dB and a 2 dB improvement 

in PSL is achieved over the GCS and the QPCS codes. The delay axis is also normalized 

by the sampling period 1 1 15b st f  kHz and the AACF and PACF repeat at each code 

period of sN samples.  



 50

The PSL can be read from Figure 21(a) in where the largest side lobe level is 38 

dB down from the peak. This is in agreement with the theoretical result PSL = 

1020log (1 ) 41M   dB (voltage ratio). Also it can be note from Figure 21(b) that the 

signal has a PACF = 41 dB (non-zero side lobes), being the ISL= 16 dB.   

 

Figure 21.  (a) AACF and (b) PACF of Costas FSK waveform using QGCS of code 
length 32 . 

While examining the signal, the axis is normalized by the subcode period bt and 

so the PAF from Figure 22, repeats at c scN b since the waveform is sampled. That is, 

dividing this axis by the number of samples per subcode scb gives the delay axis in terms 

of the subcode number. By analyzing the delay-Doppler response of the matched filter 

output in the ambiguity diagram, the PDS is about 26 dB, improving in 2 dB the results 

achieved from the GCS and the GPCS. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-60

-40

-20

0

 / tb

A
pe

rio
di

c 
A

ut
oc

or
re

la
tio

n 
[d

B
]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-60

-40

-20

0

 / tb

P
er

io
di

c 
A

ut
oc

or
re

la
tio

n 
[d

B
]

(b)

(a)



 51

 

Figure 22.  PAF for Costas FSK waveform using QGCS of code length 32 . 

In the next chapter, concluding remarks are examined based on the results 

obtained. The different performances and particular improvements in the PSL, ISL, and 

PDS among the implementation of each complementary sequence technique are shown, 

concluding with future work recommended based on this study. 

 

 

 

 

 

 

 

 

-1000

-500

0

500

1000

0
0.5

1
1.5

2
2.5

x 10
5

0

0.5

1

  /  tb * Nc tb

  |
 (
 ,
 )

| 



 52

THIS PAGE INTENTIONALLY LEFT BLANK 



 53

VI. CONCLUDING REMARKS 

It is relatively easy for an intercept receiver to detect the radiated signals of 

conventional radars at long ranges. To reduce the radar’s detectability to a hostile 

intercept receiver, its peak power should be made as low as possible. The radiated energy 

should be spread over a wide angular region over a long time interval, and over a wide 

frequency band. Digital processing has increased the feasibility and capability of the 

ubiquitous radar [12]. 

The LPI systems’ rapid development is in response of the rapid change in the 

signal environment and the increase in capabilities of modern intercept receivers with one 

goal in common, detect and locate a radar emitter without being jammed. Every day these 

radars exhibit improvements in both power usage and duty cycles, which is why for every 

improvement in LPI radar, improvements in intercept receiver design can be expected 

[1]. 

Hybrid modulations presented in this study tend to make the transmitted CW 

waveform appear as noise-enhancing its LPI nature. These hybrid techniques are a subset 

of a larger group of radar architectures know as random signal or noise radar. Random 

signal radar techniques can derive target detections using correlation, spectrum analysis, 

or anticorrelation. Because of the random nature of the transmitted waveform, random 

signal radar also provides a good deal of electronic protection and has a counter-

electronic support capability [1]. 

The improvement of the range (time) sidelobe behavior based on the three new 

classes of PSK/FSK CW signals for LPI radar applications are summarized in Table 3 

and are compared to the P4 polyphase code, where the AACF and PACF are shown in 

Figure 23(a) and 23(b), respectively and the PAF in Figure 24. The use of these 

complementary sequences to phase modulated a Costas FSK waveform and to evaluate 

the periodic ambiguity properties, allows the comparison of the range (time) offset and 

Doppler offset sidelobe performance by confronting the values of the PSL, ISL, and PDS 

in dB.  
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SEQUENCE PSL ISL PDS 

GCS -38 dB -14 dB -24 dB 

QPCS -39 dB -14 dB -24 dB 

QGCS -41 dB -16 dB -26 dB 

P4 code -23 dB -10 dB -18 dB 

Table 3.   Results of PSL, ISL, and PDS from the complementary sequences  
and comparison with the P4 polyphase modulated code. 

 

Figure 23.  (a) AACF and (b) PACF of P4 code of length 32 . 
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the reference signal within the correlation receiver, the delay-Doppler sidelobe 

performance improves, but comes at the expense of a more complex receiver and 

correlation processor. 

 

Figure 24.  PAF P4 code of length 32 . 

By implementing different complementary sequence sets, improvements in 

sidelobe performance are also achieved while keeping the same number of code periods 

avoiding the expense mentioned above. These techniques can be implemented in LPI 

radar technology to achieve its LPI goals. 

 The simulations to achieve the data were performed with MATLAB-based 

software, using a graphic user interface written by Mozeson E. and Levanon N. of the 

Department of Electronic Engineering – Systems from Tel Aviv University, developing 

new algorithms by applying recursive methods to generated the different complementary 

sequences, following the same procedure establish by Pace P. E. and Ng C. Y. in [7] . 
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Future investigations with different complementary sequence techniques could be 

considered, such as quaternary Z-complementary sequences, different mutually 

orthogonal complementary sets of sequences, among others, in order to establish a more 

robust comparable matrix and to overcome both the mathematical and simulation 

challenges they present.   
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